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e AMG and AMGe

« Element-Free AMGe: an interpolation rule based
on neighborhood extensions

o Examples of extensions:
— A-extension,
— L ,-extension
— extensions from minimizing quadratic
functionals

o« Numerical experiments
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AMG and AMGe

« Assume a given sparse matrix A

o AMG, or Algebraic Multigrid is MG based only on
the matrix entries.

o Essential components of AMG:

— a set, D, of fine-grid degrees of freedom
(dofs)

— a coarse grid, Dc; typically a subset of D

— a prolongation operator P: Dc = D

— smoothing iterations; typically Gaul3-Seidel or
Jacobi

— a coarse matrix given by Ac = P'AP
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Coarse-grid selection

o There are several ways to select the coarse grid

« Dcis typically a maximal independent set

o« each fine-grid dof is typically interpolated from a

subset of its coarse nearest neighbors
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Building the prolongation, P

o« Let |1JD be a fine-grid dof
o Let Q(I) LU D be a neighborhood of |

o Let Qc¢(1) be the coarse-grid dofs used to
Interpolate a value at |

« Examine rows of A corresponding to Q(i) \ Qc(i) .

A Ae O] 3 Qi) \ Qcli)
A=l n0 o ol } Qci)
o o of } DYQ()
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Prolongation in classical AMG

. Q(i) IS the minimal neighborhood of i

» Replace Ass with modified version, Ag;
— by adding to @&;; all off-diagonal entries in / th
row that are weakly connected to |
— second, iIn all rows s for dofs strongly
connected to / :
ety 0 ) ay) |
je 0Qc(i)

- set off-diagonals to zero

e /th row of Pis th row of

~—1
— | Ass Ase I
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AMGe differs from standard AMG by
using finite element information

o Traditional AMG uses the following heuristic (based
on M-matrices): smooth error varies slowest in the
direction of “large” coefficients

e New heuristic based on multigrid theory:
Interpolation must be able to reproduce a mode with
error proportional to the size of the associated
eigenvalue

« Key idea of AMGe: We can use information carried
In the element stiffness matrices to determine
— the nature of the smooth error components
— accurate interpolation operators
— the selection of the coarse grids
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AMGe uses finite element stiffness
matrices to localize the new heuristic

R

e Local measure:
. (gl (1-Qe ggl(1-Qe)

' e#0 (Aee) Aﬁ_ _Z_;k

kOn;
where &  are canonical basis vectors, Aand

are sums of local stiffness matrices

o« IT all local measures are small, the global measure
Is bounded and small —> good convergence!

« Then solving a small local problem yields a row of

the optimal interpolation (for the given set of C-

casP0Ints).
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AMGe uses a small local problem to
define prolongation

« We can show that (for a given set of interpolation
points), the “optimal” prolongation is the set of
weights Q that satisfy the min/max problem:

. (&gl (1-Q)e ggl(1-Qe)
min max

Q e#0 (Aee)

o« Furthermore, solving the min/max problem is

exactly equivalent to the following small matrix
formulation
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Prolongation in AMGe

« The neighborhood Q( 1) is the union of the
elements having / as vertex

e We use the assembled neighborhood matrix AQ (i)

o Partition the neighborhood matrix as before

1A Ae| Q) N Qce(i)
faa) 7| 4 D} } Qc
e /th row of Pis rth row of

—1
— (At Ase)
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Prolongation in AMGe, cont.

« Note that there is no need to modify Aff

o« Knowledge of the element matrices (used to create
the assembled neighborhood matrix) carries with it
implicitly the correct assignment and treatment of
“weak” and “strong” connection. This is the main
contribution of AMGe methods

o AMGe produces superior prolongation. The goal of
this work Is to accomplish the superior prolongation
without the knowledge of the element matrices
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AMGe - Richardson vs Gaul3-Seidel

Two-level Multilevel

height amg |amge jlamg [amge
1 0.97 |0.49 |0.98 |0.65 Richardson (1’0) cycle
1/4 0.97 |0.48 |0.98 |0.68
1/8 0.98 |0.47 |0.99 |0.64
1/16 0.97 |0.49 |0.99 |0.58
1/32 0.97 |0.45 |0.98 |0.51
1/64 0.98 |0.39 |0.98 |0.39
d h AMG AMGe
interpolation interpolation
1 1/32 0.60 0.20 -
174 | 1/8 0.95 0.25 Gaul3-Seidel (1,0) cycle
1/8 1/16 0.90 0.26
1/16 | 1/64 0.92 0.26
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Prolongation in Element-free AMGe:
based on extensions

« Let | be the f-point
to which we wish to
Interpolate
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Prolongation in Element-free AMGe:
based on extensions

« Let | be the f-point
to which we wish to
Interpolate

o Q(i) Is the set of
points In the _
neighborhood of |
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Prolongation in Element-free AMGe:
based on extensions

« Let | be the f-point
to which we wish to
Interpolate

o Q(i) Is the set of
points In the _
neighborhood of |

o Qc(i) Is the set of
coarse nearest
neighbors of i
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Prolongation in Element-free AMGe:
based on extensions

o« Define Qy (1), the
set of “exterior”
points for the
neighborhood of |:
the set of points
such that s iIs
connected to a fine
point in the _
neighborhood of |

Qy (1) ={10Q) 1, #0, ] UQ(I)\Qc(1)}
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Prolongation in Element-free AMGe:
based on extensions

o« Define Qy (1), the
set of “exterior”
points for the
neighborhood of |:
the set of points
such that s iIs
connected to a fine
point in the _
neighborhood of |

Qy (1) ={10Q) 1, #0, ] UQ(I)\Qc(1)}
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Prolongation in Element-free AMGe:
based on extensions

« We use the following window of the matrix A

Are A Arx 01 Qi) \ Qc(i)
0 0O 0O 0O Qc(i)

Axt Axc Axx 0| Qx (1)
[ ] [] (] [] | everything else on grid

where we will only be interested in the blocks
shown.
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Prolongation in Element-free AMGe:
based on extensions

e Assume that an extension mapping Is available:

| 0
E=| 0 |

Ext Exc

I.e., we Interpolate the exterior dofs (“X’) from
the interior dofs f and ¢, by the rule

Vx = ExsVs T ExcVe
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Prolongation in Element-free AMGe:

based on extensions

« We construct the prolongation operator on the

basis of the modified matrix

{'/A‘\ff ”/A‘\fc}

that 1s,

= [ A, Are s Ay |

| 0
o |

Ext Exc

Ass = Ass T Asx Exg

and

N

Atc = Aje T ArxExc

CASC

VEH 20



Prolongation in Element-free AMGe:

based on extensions

e Then the th row of the prolongation matrix ~ is
taken as the 7/th row of the matrix

~—1 A~
—| Asr Asc

e T0 make use of this method we must determine
useful ways in which to build the extension
operator ]

I 0

E=| 0 |
Ext Exc]
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Examples of extension: A-extension

« Given v defined on Q( 1), we wish to extend it
to vy defined on Q. (1) .

o Let Iy be an exterior dof and
define S={]:q . # 0} to be
entries of A to which Iy IS
connected.

e .The A-extension IS:
1

V- — |a. : |V'
Ix o ZS Ix,J ')
Zslal)(’Jl
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Examples of extension: Ls-extension

« Given v defined on Q( 1), we wish to extend it
to vy defined on Q. (1) .

« Let Iy be an exterior dof and
define S={]:q . # 0} to be
entries of A to which Iy IS
connected.

‘ZIX

« The L,-extension is (a simple average):

1
Vi, T == > VY,
I'x E:Sl S '}
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Examples of extensions: based on
minimizing a quadratic functional

o« This is the method Achi Brandt proposed in 1999.

« Given v defined on Q( 1), find the extension vy by
finding
min Q(Vy )

where Q(Vx) =) i, (Vi ~ Vj)2

ix0Qy (i)
] UQ (i)

e This Is a “simultaneous” extension, and IS more
expensive than A-extension or Lz—extension
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Examples of extensions: minimizing a
“cut-off” quadratic functional

. Given Vdefined on Q (1), find the extension vy

that satisfies _ T
min[Bv] A_ [Bv]
Vx Q(1)
- _
V
v = Vi: 3=] | 0
where v, ) and . is
a diagonal matrix. A good choice iIs the vector
T
_ -1 f
By = —Axx|Axt » Axc | e

note that this is also a “simultaneous” extension
(but less expensive than the “full” quadratic)
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Classical AMG viewed as extension

o« The classical (Ruge-Stiben) AMG corresponds to
selecting _ _ _
Q(1) = {1} OQc(1)

and defining an A-extension by setting Vi, =V,
iT 1y is weakly connected to |, and setting

1
V-

i~ ZaixJ Zaix,jvj

if Iy is strongly connected to i
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Properties of the extensions

o All the extensions described ensure that if Vis
constant in Q (1) then the extension vy is the
same constant in Qy (1), an important property
for second-order elliptic PDEs.

o For systems of PDEs we use the same extension
mappings, based on the blocks of A associated
with a given physical variable. That is, the
extension to a dof Iy corresponding to the
physical variable k is based on dofs from Q(1)
that describe the same physical variable x.
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A simple example: the stretched
quadrilateral

o« Consider the 2-D Laplacian operator, finite-
element formulation on regular quadrialteral
elements that are greatly stretched: hx » hy

hx
o AS P o . the operator stencil tends to:
y
-1 -4 -1
2 8 2
-1 -4 -1

CASC
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A simple example: the stretched
qguadrilateral: geometric approach

o« For this problem the standard geometric multigrid
approach is to semicoarsen:

-
- -
UL 3L SL .8
-+
=B

« And the interpolation stencil is:

0050

PA:

0 05 0
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A simple example: the stretched
quadrilateral: the AMG stencil

« A simple calculation shows that classical AMG
yields the interpolation stencil:

1 1 1 ]

12 3 12 083 .333 .083°
Pavc = 0 S 0

1 1 1 083 .333 .083

12 3 12
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A simple example: the stretched
quadrilateral: the neighborhood

o Let Q(i) =i 0QKi) =i O{N, S SN, NW,E, NE}

NW N NE
E
SW S SE

o Define Qy(1) ={ W,E}

then A =[8]
Acc =[ -4 -4 -1 -1 -1 -1]

Afx — 2 2]
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A simple example: the stretched
quadrilateral: the A-extension

o For the A-extension the extension operators are:
_1/1144 112
2

- = E,. = —
Xc " 1201 1 44} Xt 712

A 104
from which A = f] . and

~ 1
AfC=:—3[—11 -1 -1 -1 -1 -1]

yielding the interpolation stencil:

1 11 1
26 26 26 1,088 .423 .038"
Py = i = i
1 11 1 .038 .423 .038
|26 26 26
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A simple example: the stretched
quadrilateral: the Lyextension

A similar calculation for the weights using the L5
extension yields the interpolation stencil:

3 16 3

44 44 44 .068 .364 .068
P, = N ~ N

3 16 3 .068 .364 .068

a4 M s
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A simple example: the stretched
quadrilateral: the cut-off quadratic min

o« For the cut-off extension the extension operators

are:E 11144 T
XC7gl11 44 Ext = ‘zH
from which Arc = [7] , and
~ 1
Afczé[—7 -7 000 O]
yielding the interpolation stencil:
0 .5 0]
PA = [ ]
0 .5 0
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The stencil produced by various
extension methods:

o Classical AMG mm) Pavc = U
.038 .423 .038
. Py = [] mm A-extension
1.038 .423 .038 |
o L2-extension mmm) P = (]
(0 .5 0|
. Py = O @ cut-off quadratic
0 .50
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Numerical experiments

o« Second order elliptic operator

— Unstructured triangular mesh (400, 1600,
6400, and 25600 fine-grid elements)

— coarsened using agglomeration method of Jones
& Vassilevski
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AMGe requires coarse-grid elements &
stiffness matrices.

« Element Agglomeration: Use graph theory to create coarse
elements first, then select coarse-grid by abstracting geometric
concepts of face, edge Vertgx
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Agglomeration coarsening

o« Finest grid
— 1600 elements
— 861 dofs
— 5781 nonzero
entries
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Agglomeration coarsening

e 1st coarse grid
— 382 elements =

— 330 dofs '

— 2602 nonzero
entries
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Agglomeration coarsening

e 2nd coarse grid
— 93 elements
— 143 dofs
— 1397 nonzero
entries
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Agglomeration coarsening

o 3rd coarse grid
— 33 elements

— 64 dofs
— 634 nonzero
entries
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Agglomeration coarsening

e 4th coarse grid
— 15 elements

— 32 dofs
— 304 nonzero
entries
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Agglomeration coarsening

e 5th coarse grid
— 7 elements
— 16 dofs
— 126 nonzero
entries
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Agglomeration coarsening

e 6th coarse grid
— 3 elements
— 8 dofs
— 46 nonzero

entries
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Agglomeration coarsening

e coarsest grid
— 1 elements
— 4 dofs
— 16 nonzero

entries
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Coarsening history, unstructured 2nd

order PDE

e unstructured
triangular grid

e 2nd order PDE

CASC

| level # || grid = 4 #3 | #2 | #1 ]
4] matrix size 90321 | 22761 | 5781 | 1491
# dofs 13041 3321 861 231
# elements | 25600 6400 1600 400
1 matrix size 32598 9540 2602 | 1094
# dofs 4108 1152 330 114
# elements 6013 1427 382 76
2 matrix size 14305 4361 1397 470
#= dofs 1507 451 143 50
# elements 1489 374 a3 26
3 matrix size 7193 2098 634 199
# dofs 643 198 64 23
# elements 392 117 33 11
4 matrix size 3458 ar5 304 88
# dofs 302 91 32 12
# elements 158 47 15 5
5 matrix size 1580 453 126 36
# dofs 140 45 16 6
# elements 70 22 7 2
(5] matrix size 714 188 46 16
# dofs 68 22 8 4
# elements 33 10 3 1
7 matrix size 274 84 16
#= dofs 30 12 4
# elements 14 5 1
8 matrix size 120 30
# dofs 16 6
# elements 7 2
[?] matrix size 42 16
# dofs 8 4
# elements 3 1
10 matrix size 16
# dofs 4
# elements 1
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Convergence results, unstructured 2nd

order PDE

e« 2nd order PDE problem

— unstructured triangular grid
— V(1,1) cycles
— Gaul3-Seidel smoothing

| Interp. rule | # elements | =400 | = 1600 | = 6400 | = 25600 |
nonconf. AMGe #£ iter 14 16 21 23
0 0.115 0.172 0.252 0.289
A-extension #£ iter 13 15 19 20
0 0.118 0.158 0.218 0.247
Lo-extension #= Iter 13 16 19 21
0 0.119 0.161 0.227 0.249
quadr. funct. min. 7= Iter 13 15 19 19
0 0.105 0.152 0.222 0.231
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Numerical experiments

o 2d elasticity (including thin-body)
— structured quadrilateral grid, hx = hy

— d (0 1] is the beam thickness

— coarsened using agglomeration method

— the same coarse-grid Is used for AMGe
(vertices of agglomerated elements)
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Coarsening history, elasticity problem

o Structured
rectangular
grid

o 2-d elasticity

CASC

level # h=0.050| h=0.025 | h =0.0125

0 size 14884 58564 232324
# dofs 882 3362 13122

1 Size 10440 40880 161760
# dofs 264 924 3444

2 size 4128 17248 70488
# dofs 84 264 924

3 size 1000 4956 19056
# dofs 32 94 284

4 Size 256 1404 6128
# dofs 16 38 104

5 size 64 324 1668
# dofs 8 18 42

6 size 144 576
# dofs 12 24

7 size 64 144
# dofs 8 12

8 size 64
# dofs 8
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Coarsening history, elasticity problem

o Structured
rectangular
grid

o 2-d elasticity
e thin body

—d = 0.05

CASC

level # h = 0.025 h = 0.0125 h = 000625

0 size 3388 12532 48100
# dofs 246 810 2898

1 size 1664 7328 30656
# dofs 88 252 820

2 size 784 3744 10152
#£ dofs 44 132 252

3 size 384 1152 3816
# dofs 24 48 132

4 size 144 384 1152
# dofs 12 24 48

5 size 64 144 384
# dofs 8 12 24

6 size 64 144
# dofs 8 12

7 Size 64
# dofs 8
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Convergence results, elasticity

o 2d elasticity problem

—d=1

— V(1,1) cycles
— Gaul3-Seidel smoothing

Interp. rule h=0.050 | h=0.025 | h = 0.0125
nonconf. AMGe || # iter 16 18 20
0 0.172 0.206 0.234
A-extension # Iter 12 12 12
0 0.099 0.098 0.097
Lo-extension Z# jter 13 13 13
0 0.101 0.102 0.104
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Convergence results, elasticity

e 2d thin-body elasticity problem

—d = 0.05

— V(1,1) cycles
— Gaul3-Seidel smoothing

Interp. rule h=0.025 | h=0.0125 | h = 0.0062
nonconf. AMGe || # iter 17 18 19
0 0.180 0.198 0.22
A-extension # iter 20 23 22
0 0.227 0.286 0.280
Lo-extension # iter 18 20 27
0 0.203 0.243 0.254
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Conclusions

e AMGe produces superior prolongation, but requires
extra information, i.e., the element matrices

e For purely algebraic problems, element-free AMGe
provides a technique for building pseudo-element
matrices based on several extension schemes

o Preliminary experimental results suggest that
element-free AMGe also produces superior
prolongation, competitive to AMGe results

e Systems of PDEs can be handled in a very natural
way
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o J. Jones and P. Vassilevski, “AMGe Based on Element Agglomeration,” submitted to
SI1AM Journal on Scientific Computing.
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